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MULTIPLE-OBJECT TRACKING AND TEAM
IDENTIFICATION FOR GAME STRATEGY
ANALYSIS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to, and claims priority from,
U.S. Provisional Patent application No. 61/079,203 filed on
Aug. 22, 2008 by S. Gefen et al. entitled “Multi Object
Tracking and Team Identification for Game Strategy Analy-
sis”, the contents of which are hereby incorporated by
reference.

FIELD OF THE INVENTION

The present invention relates to the field of computer
vision and image processing, and more specifically, to the
real-time recognition and tracking of objects moving within
a field of view and captured by one or more video cameras.

BACKGROUND OF THE INVENTION

Increasing viewership of major league sports by enhanc-
ing game viewing experience has the potential to increase
advertisement-based revenues. This applies to all major
league sports, including, but not limited to, hockey (NHL),
basketball (NBA), and soccer (MLS). A good example of
such a game enhancing method is the existing First-Down
Line (FDL). The FDL is a fluorescent yellow or orange line
that appears on TV broadcast of football games. The FDL
allows viewers at home to observe when a player gains a
first-down. This FDL graphic is added to the broadcast video
in real-time using a video-insertion technology introduced
by PVI in 1998 and is described in detail in, for instance,
U.S. Pat. No. 5,264,933, the contents of which are hereby
incorporated by reference, and by SportVision and is
described in detail in, for instance, U.S. Pat. No. 6,266,100
the contents of which are hereby incorporated by reference.
The FDL has since become an integral part of NFL game
broadcasts.

Similarly, statistical information about players and team
performance as well as ongoing analyses of game progress
may be a significant factor in improving game coverage,
and, in doing so, increasing viewership. For example, ana-
lyzing team strategy and visualizing the teams’ relative
formation and advances in a playback during breaks could
add useful insights into game dynamics. Another example of
improving game coverage is using information that could be
derived in real-time from puck shots in hockey.

The utility of such tracking data, generated throughout a
sporting event, may not be limited to during-the-game
statistics presentation for viewing/reporting enhancement.
The tracking data collected in real-time during the sports
event may, for instance, be archived into a database and used
later to, for instance, index a library of games. Much
information could be derived from such a database includ-
ing, but not limited to, learning about the performance
history of certain players or certain teams, doing compara-
tive analyses between for instance players or teams, and
generally computing statistics about any event of interest. It
could also be used as a tool for training or demonstrating
remarkable player and team maneuvers and tactics.

There are many types of applications that could be
derived based on the positional data of the players and their
team affiliation (the raw data), including various statistical
analyses, graphical illustrations, and game dynamic visual-
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izations. However, obtaining the raw data to produce such
real-time tracking statistics presents many significant chal-
lenges. For instance, the large amount of video information
that has to be analyzed from each frame of video, which may
be high-definition video. Accomplishing this using current
technology requires the development of innovative methods.

SUMMARY OF THE INVENTION

Briefly described, the present invention is a system and
method for automatically tracking multiple objects from a
sequence of video images of those objects. In a preferred
embodiment, the system and method of this invention,
hereinafter referred to as either the tracking method or the
tracking process, are such that the objects to be recognized
may be moving rapidly and may be undergoing occlusion.

The tracking method of this invention may, for instance,
extract raw data about participating elements in a sporting,
or other event, in a non-obtrusive manner, i.e., in a way that
does not interfere with the actual participants in the event.
The raw data may, for instance, include the position and
velocity of the players, the referees, and the puck, as well as
the team affiliation of the players. These data may be
collected in real time and may include accounting for
players moving fast and unpredictably, colliding with and
occluding each other, and getting in and out of the playing
field. Adding to this internal complexity, the tracking
method may also take into account the vibrations of the
cameras, the varying light conditions in the arena, and
camera flashes. This invention may deliver a unified solution
for continuous real-time, multiple-object, and multiple-view
tracking in these and similar challenging conditions, and
may do so with a flexibility that allows deployment at
different field layout conditions.

In a preferred embodiment of the tracking method, a video
sequence is processed by a suitably programmed, general
purpose computing device. The video sequence may be
captured by a suitable sensor such as, but not limited to, a
high definition digital camera. The sensor may be positioned
at any viewpoint in the scene, including, but not limited to,
side-view and overhead-view. In an alternative embodiment
of'the invention, several cameras may be used to provide full
coverage of the field. For instance, each such sensor may
generate the video input for one tracking process. Camera
views may overlap to allow the computation of off-ground
objects’ trajectories or to provide system redundancy. The
tracking data, provided by all tracking processes, may then
be fused together to form a coherent representation of the
whereabouts of all the elements on the field and their team
affiliation.

The tracking method may first stabilize the input video
and then detect moving foreground regions by, for instance,
utilizing a background subtraction method. The background
subtraction method separates the foreground regions from
the scene background for each frame using a background
model. The background model—which may be a reference
image—may be generated through a training process prior to
the game and may be adapted throughout the game to meet
changing light conditions as well as physical changes on the
field. The detected moving foreground regions may repre-
sent desired elements such as, but not limited to, the players,
the referees, the puck or the ball, or some combination
thereof. The detected moving foreground regions may also,
or instead, include undesired noise elements. Prior informa-
tion regarding the expected characteristics of the desired
elements—pre-selected objects—may be used to filter out
this noise.
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Following foreground detection, the tracking method may
characterize a foreground as a measurement that, for
instance, represents a single-player observation, a multi-
player observation, or a non-player observation such as, but
not limited to, a puck or a ball. Foreground related infor-
mation such as feet position and environs may also be
calculated and stored into the measurement’s data structure.
Tracking an object that is associated with a single-player
measurement (isolated object) is relatively simple. On the
other hand, tracking an object that is associated with a
multi-player measurement, typically represents two or more
possibly occluding players, requires a further analysis. To
this end, a particle-filtering technique, utilizing color and
players’ formation, may be used for tracking in order to
maintain the separate tracks of closely engaging players. The
tracking method in the present invention uses cues such as,
but not limited to, uniform and skin color, players’ figure
size, and surrounding players’ formation to maintain con-
sistent and lengthy tracks of elements in the field. In
addition, it may use the color characteristic of the tracked
objects to classify them into teams such as a home group, a
guest group, and a referee group or some combination
thereof.

These and other features of the invention will be more
fully understood by references to the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an exemplary embodiment of the present
invention featuring a multiple-player and multiple cameras
tracking system.

FIG. 2 shows a top level flow diagram of the tracking
method.

FIG. 3 illustrates the camera calibration.

FIG. 4 shows a flow diagram of the method for reference
images training.

FIG. 5 shows a flow diagram of the background subtrac-
tion algorithm used for foregrounds detection.

FIG. 6 shows a flow diagram of the image registration
algorithm used to compensate for camera vibration.

FIG. 7 shows a flow diagram of the color normalization
algorithm used to correct for color variance.

FIG. 8 shows the measurements characterization stage in
the tracking method.

FIG. 9 illustrates shape recognition of the puck (on the
left) and hockey stick (on the right).

FIG. 10 demonstrates outlines analysis in which a fore-
ground’s environs and the center of foreground projection
on the ground (feet location center) are calculated.

FIG. 11 shows a flow diagram of the object tracking
algorithm.

FIG. 12 illustrates foregrounds merge and split transitions
through successive frames.

FIG. 13 shows a block diagram of the team identification
training used for players’ team classification.

FIG. 14 shows an alternative embodiment of the invention
featuring the player tracking system component employed to
guide a video insertion system.

DETAILED DESCRIPTION

The present invention uses and integrates state-of-the-art
techniques from computer vision and image processing to
track players/referees and puck/ball that are moving fast and
unpredictably while engaging and occluding each other.
Moreover, athletes playing in a team sport change their pose
rapidly and frequently, which makes tracking their silhou-
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ettes especially difficult relative to, for example, tracking
pedestrians. Adding to the complexity of the tracking prob-
lem is the need to account for vibrations of the camera’s
platform, changing light conditions, and frequent flashes in
the arena. This invention provides a vision-based tracking
solution that may be used in real-time and may be transpar-
ent-to-game-proceeding tracking solution.

The tracking method of the present invention is described
below in the context of tracking hockey players, referees,
and the puck during a hockey match. A person of ordinary
skill in the art will appreciate that the tracking method of this
invention may be applied to a wide range of events includ-
ing, but not limited to, sports games and events such as
football, soccer, field hockey, rugby, cricket, tennis, track
and field, swimming, gymnastics, as well as for non-sporting
applications such as, but not limited to, pedagogical, secu-
rity and traffic management systems by, for instance, track-
ing children in a playground or play area, tracking people on
surveillance cameras in a train station or airport environ-
ment, and tracking cars and trucks on traffic cameras.

A preferred embodiment of the invention will now be
described in detail by reference to the accompanying draw-
ings in which, as far as possible, like elements are designated
by like numbers.

Although every reasonable attempt is made in the accom-
panying drawings to represent the various elements of the
embodiments in relative scale, it is not always possible to do
so with the limitations of two-dimensional paper. Accord-
ingly, in order to properly represent the relationships of
various features among each other in the depicted embodi-
ments and to properly demonstrate the invention in a rea-
sonably simplified fashion, it is necessary at times to deviate
from absolute scale in the attached drawings. However, one
of ordinary skill in the art would fully appreciate and
acknowledge any such scale deviations as not limiting the
enablement of the disclosed embodiments.

In an exemplary embodiment of the present invention,
shown in FIG. 1, cameras 20 are positioned at various
locations at the arena to allow a full coverage of the scene,
in this case the game field 12. When off-ground positioning
of objects, such as the puck 16, is required, an overlapping
coverage of at least two views should be provided. Other-
wise, there are typically no constraints on the locations of
the cameras. Each video signal may be captured in one of the
Player-Track computing units 24 and may be fed into the
tracking algorithm, one frame at a time. At each iteration the
tracking algorithm typically analyzes the current video
frame to first detect and then track moving objects. At the
end of each iteration, Player-Track may broadcast informa-
tion about active tracks—currently tracked objects—over,
for instance, an Ethernet 30. This information about active
tracks may for instance, include, but is not limited to, the
real-world position of an object, the velocity of the object
and the team to which the object belongs, or some combi-
nation thereof. The Track-Manager 22 may receive the
messages broadcasted from each Player-Track 24 in the
system and may compile all the received information into
one coherent representation. Then, the Track-Manager 22
may broadcast back on the Ethernet 30 the fused tracking
data to be received by a third party for game enhancement
or to be stored in a database 28 for off-line processing.

A top level flow diagram of the tracking method is shown
in FIG. 2. The first two steps of the algorithm consist of
obtaining the current image 40 and locating the foreground
regions 42. The latter may includes stabilizing the video,
normalizing the color, detecting the foreground regions
using the reference images, and extracting their outlines.



US 9,437,012 B2

5

Next, each foreground is characterized 44 based on features
such as shape and color metrics as representative of one or
more of the pre-selected objects. Due to occlusion, often, a
foreground may represent more than one object. Hence,
next, each tracked object is assigned to be represented by
one foreground region or, alternatively, each foreground is
associated with one or more tracked objects 46. This pro-
cess, referred to as measurement-to-track association, is
critical to resolving multi-object tracking where occlusion is
frequent and complex.

The current position of each tracked object is then pre-
dicted 48 utilizing a motion model and the characteristic of
the object associated measurement. Following prediction,
the object position is further refined 50. This stage is
especially important when several objects share the same
representative foreground. Refining each object position,
then, is done with respect to the representative foreground
and with respect to the formation of neighboring objects. In
the probabilistic approach suggested by this invention the
likelihood of an object being located at a certain position is
a function of the similarity between the object’s color
characteristic and the color characteristic of its representa-
tive foreground, as well as the relative position of the object
to its neighboring objects. Note, that in steps 48 and 50
tracks are processed independently and therefore implemen-
tation can be parallelized, taking advantage of a multipro-
cessing environment.

Next, in step 52, measurements without object association
are examined. A measurement that is characterized as a
single object measurement will be considered as a new
observation indicative of a new object entering the scene. In
this case, a new track data structure is initiated including the
new object’s characteristic such as position, color, and
object’s ROI. Finally, the tracked objects are clustered into
groups 54, in this case, the home team, guest team, and
referees. Detail description of the above tracking method
steps will be presented below.

Prior to employing tracking, knowledge of the cameras’
model is required to compute the position of tracks in
real-world coordinates and to characterize the foregrounds
in real-world space. The relation between a real-world point
at the scene and its projective point in image-space is
determined by a calibration procedure, as illustrated in FIG.
3. Calibration may be carried out during system setting once
the cameras are positioned in place. A representation of the
scene 60, in this case, the rink, in real-world coordinates 64
is compared with the scene’s projective image 62 supported
by image-space coordinates 66. Correspondence is estab-
lished by pairing landmark points such as the pair 68 and the
pair 70. This correspondence information allows for the
computation of camera parameters, including the camera’s
gimbal position, pan, tilt, roll, and image distance from the
lens. These camera parameters define the mapping between
a point in real-world space, denoted hereafter as x=(x, y, z),
and its projective point in image space, denoted hereafter as
u=(u, v).

The first step when automatically tracking objects is
detection of the dynamic elements imaged by the system’s
sensors—Ilocating foreground regions 42. Typically, locating
the foreground regions is achieved by background subtrac-
tion. The static scene, the background, is statistically rep-
resented by reference images. Comparing the reference
images against the current image allows demarcation of the
foreground regions from the background region. In the
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present invention the background is modeled by three ref-
erence images created via training on a video sequence
captured prior to the tracking operation. The reference
images, then, are accessed by the background subtraction
process in 42 and are also updated to account for lighting
changes in the scene during tracking.

FIG. 4 is a flow diagram describing the creation of the
reference images out of a training video sequence. Process-
ing through the training video sequence, the goal is to find
the most probable color value for each image pixel. Assum-
ing that any foreground element in this video sequence is in
motion, most of the time the image pixels represent a
background color. To represent the background model, a
record of the N most probable background color values is
maintained by the algorithm for each pixel in the image. In
addition, a frequency counter is assigned to each one of
these N probable color values to record the number of
corresponding pixels out of the training video sequence that
match each one of these color values.

The algorithm for calculating the reference images starts
with initializing the above background model records to
zero. Going through the pixels of the first image in the
training video sequence, each pixel is compared first with its
corresponding most probable background color 80. If this
pixel color value is within a predefined range of this most
probable background color, then this pixel color value is
used to update the value of the most probable background
color and its frequency counter is increased by one 88.
Otherwise, this pixel is compared with its corresponding
second most probable background color 82. Similarly, at this
point, if this pixel color value is within a predefined range
of the second most probable background color, then this
pixel color value is used to update the value of this second
most probable background color and its frequency counter is
increased by one 88. This comparison may go all the way
through to comparing the current pixel value against the Nth
most probable background 84. However, if the current pixel
value was not found to be within range of any of the N
background color values, the Nth most probable background
is set to the current pixel value and its frequency counter is
set to one 86.

Once, the matching background color has been updated
and its counter incremented 88, the N current background
colors are sorted with respect to their frequency counters 90.
This way the order of the probable background colors from
most probable to least probable is maintained so that access-
ing them is more efficient all through the process. Complet-
ing processing of all pixels 96 through all training video
sequence 98, the reference image is established as the one
composed of all most probable background colors 100.
Next, three representative reference images are created. The
first one is a minimum reference image 108, the output of a
3x3 minimum filtering of the reference image 102. The
second one is a maximum reference image 112, the output
of'a 3x3 maximum filtering of the reference image 106. And
the third one is an average reference image 110, the output
of'a 3x3 average filtering of the reference image 104. These
three reference images represent the scene background, and
as such are used to locate the foreground regions 42 as will
be explained next.

FIG. 5 illustrates the steps performed toward locating the
foreground regions in the current video frame. In the first
step an image stabilizer may be employed 122. In practice,
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changes in light conditions and/or movements of camera’s
platform interfere with the quality of the background sub-
traction operation. Especially, outdoors deployment may
introduce camera vibrations and color deviations that should
be accounted for before background subtraction takes place.
This is typically addressed by 1) employing an image
registration procedure to compensate for instantaneous spa-
tial changes in camera location 124, and by 2) employing
color normalization to correct for global color variation 126.
These two operations are illustrated in FIGS. 6 & 7 and will
be described later on.

The current image 120, optionally after employing the
stabilization procedure 122, is compared with the reference
images 128. First, each current image pixel is compared
against the corresponding pixel in the average reference
image 130; if within a predefined range, it is determined to
be a background pixel 142 and the corresponding pixel in a
mask (binary) image is set to zero. Otherwise, if the pixel is
not within a predefined range, a second test takes place: the
value of the current image pixel is checked to verify if it is
between the values of corresponding pixels from minimum
and maximum reference images 132. If it is within this
range, the current image pixel is determined to be a back-
ground pixel 142; otherwise, an out-of-range counter is
incremented by one 134. The purpose of the out-of-range
counter is to detect an occasional flash that disables proper
further analysis of the current image. Thus, if the out-of-
range counter is above a pre-defined threshold 136, a flash
is detected and processing stops for the current image 140.
Otherwise, the current pixel is determined to be a foreground
pixel 138 and the corresponding pixel in the mask image is
set to one. Processing of all pixels accordingly 146 leads to
completion of the mask image that constitutes a binary
representation of the foreground regions in the current image
150. The last step includes delineating the outline of each
foreground region and storing it in a vector 152. An outline
vector consists of the coordinate points of pixels on the
foreground’s boundary. A foreground’s outline embodies
shape information, and so is instrumental for its character-
ization.

Camera vibrations and instantaneous changes in illumi-
nation are a common reality in the field and should be
accounted for when relating one video frame to another. The
background subtraction technique as described in steps 130
through 150, assumes a fixed camera position, or, alterna-
tively, that the current image was compensated for any
spatial deviation relative to the average reference image.

FIG. 6 illustrates the image registration procedure used to
map the current image onto the average reference image. In
other words, the average reference image and the current
image are brought into registration. The registration algo-
rithm estimates the spatial transformation that maps a point
in the current image-space to its corresponding point in the
average reference image-space. The transformation function
can be rigid, affine, or projective, depending on the severity
of the vibrations and the distance between the camera and
the target. For example, in the case of mild vibrations, an
affine transformation is typically sufficient:

Uy n h) [u dy
i e R P R
vy 1 2] v da

A feature based registration method may be employed to
resolve this transformation.
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It is common practice in image processing to analyze
patterns at different resolutions. A multi-resolution
approach, in general, reduces algorithm complexity and
prevents optimization algorithms from being trapped at local
extremum. Thus, in FIG. 6 the reference 160 and current
frames 164 are sub-sampled into an L-level-pyramid repre-
sentation. Next, a set of feature points, S={(u, v);
i=1, ..., N}, from the average reference image is compiled
162. These feature points represent high curvature points
from the field plane 12. Similarly, a set of points, S={(u, v);;
i=1, ..., N}, is defined and initialized as S=S, in step 166.
Having corresponding sets, S, and S, it is straightforward to
calculate T using a weighted least squared error (WLSE)
estimator, for instance. The challenge is in obtaining a set S
that corresponds to the set S,. To this end, first a set that is
merely matching S, (not corresponding necessarily) is found
168, and then, using, for instant, the RANSAC method, the
transformation parameters: [t;; t;, 15, t5, d; d,] are estimated
together with the corresponding set S 170. This feature-
based image registration method will be explained in detail
next.

The registration algorithm computes the transformation T
in a coarse-to-fine order. At each level of resolution a
matching feature set S to S, is pursued 168. First, the points
(u,, v,); €S, and (u, v), €S are scaled down to fit the current
resolution level. Then, a block matching technique may be
used wherein a block centered at a feature point (u,, v,); €S,
is compared with blocks from a neighborhood centered at
the current feature point (u, v), €S. Thus, the pair of blocks
with the highest correlation will result in a match. Note that
this pair of points has a matching texture but does not
necessarily represent correspondence. Therefore, only a
subset of S, and S that better represents correspondence
should be used to estimate the transformation parameters in
(1).

In step 170 the RANSAC (Random Sample Consensus)
method may be utilized to estimate the transformation
parameters in (1) from S, and the current matching set S. The
RANSAC method is known to be a robust scheme to fit a
mathematical model to given data in the presence of outliers,
and it may successfully be used in step 170 to recover the
transformation T and to update the points in set S as follows:
u=T"'u,. The updated points in set S are in better corre-
spondence with the points in S, for the current resolution
level. To obtain a refinement for T and S, processing
proceeds to the next, higher, resolution level 174. Complet-
ing processing at all resolution levels 172, the last and most
refined estimate for the transformation T is used to map the
current image onto the average reference image 176.

Once spatial vibrations have been accounted for through
image registration in step 124, the image stabilizer performs
color normalization in step 126. Variation in image illumi-
nation may occur due to a change in the angle between a
light source and the camera or, alternatively, a jitter in
camera aperture and shutter speed. Here the color values of
the current frame are altered through polynomial transfor-
mations to globally match the average reference image. In
the case where YUV color model is used, for example, the
Y value may be mapped independently, while the mapping
operator for the color components, U and V, may be coupled
since their values are highly correlated.

FIG. 7 illustrates the method for color normalization
where, first, the average reference image and current image
are partitioned into, for example, 8 by 8 blocks, and then
each block’s mean and variance are calculated 194. Next, to
establish color correspondence, overlapping blocks from the
average reference image and the current image are examined
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196. If the overlapping blocks’ means are within a certain
range and their variances are small enough, a correspon-
dence in color space is established as illustrated in 202. The
color transformation may be defined

Y,=a,-Y+a,
U,=b, U+b - V+b,

V,=cy:Ute - Vicy

@

where (Y,,, U,,, V,) is the altered color value and [a,, a,, b,
by, b,, ¢, ¢, C,] are the transformation parameters. Using
the correspondences above, the transformation parameters
may be computed using a WLSE estimator 198.

Back to FIG. 5, the realization of video stabilization in
step 122 is optional and its inclusion depends on the con-
ditions in the field. For example, in outdoor deployment the
camera may be exposed to vibration due to wind load or any
non-stationary camera platform; while in indoor deployment
only small (sub-pixel) vibrations may occur. Step 132 suf-
ficiently addresses sub-pixel displacements, but in the case
of larger displacements, image registration 124 and possibly
color normalization 126 should be employed first before
proceeding to background subtraction.

Following the foreground regions locating algorithm in
step 42, the measurements characterization, step 44, is
carried out as illustrated in FIG. 8. A measurement, includ-
ing a foreground region and its outline, contains color and
shape information that can be analyzed using various pattern
recognition methods in order to learn about the nature of the
object or objects it represent. In the context of a hockey
game the objects of interest are the players, the referees, the
hockey sticks, and the puck. Therefore, in our exemplary
embodiment each detected foreground is characterized and
analyzed to determine which one, or more, of these pre-
defined objects they may represent. The tracking method
later uses this information to carry out tracking of these
pre-defined objects, specifically, to associate detected mea-
surements to tracked objects.

In the hockey game case, first, the outline length (vector
size) is examined to determine if a measurement is likely to
represent a puck 212. If the outline length is smaller than a
preset threshold, then a candidate for a puck measurement is
detected. Otherwise, the foreground’s area and bounding
ROI are examined to determine if it is likely to represent a
human or a group of connected and/or occluding humans
220. For example, the foreground’s area may be compared
with the area of the ROI of a player hypothetically posi-
tioned at the measurement vicinity. Or the height of a
foreground’s ROI may be compared with the height of the
ROI of a player hypothetically positioned at the measure-
ment vicinity. If the foreground’s characteristics are found to
be those of a human/humans, then processing proceeds to
step 222, otherwise processing proceeds to the next fore-
ground 226.

Although there is only one puck on the ice during the
game, typically, more than one measurement will be con-
sidered as a puck candidate. Therefore, in the puck detector
214 various features are fused together to determine the
most likely puck measurement. There may be two groups of
features computed in step 216. The first group of features is
designed to capture the elliptic signature of the puck at
various extents. The left part of FIG. 9 illustrates the puck
signature 240. Note that the puck’s image is smeared due to
motion blur. The contours 242 and 244 shows two possible
Hough transform integration paths, C,, that may be used to
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detect the puck’s elliptic shape. These features may be
employed on the puck image, Y (may be the gray scale part
of the image) as follows:

1

Fi,=—= §Y(s)ds‘ r=0 R ®
Sairey ; b s
Cr

The second group of features is designed to detect a
hockey stick. In the search for the puck, measuring the
likelihood that a measurement originates from a hockey
stick helps eliminate it from mistakenly being detected as a
puck. (Often, the tip of the hockey stick resembles the puck
image due to the high reflectivity of the part connecting the
stick to its tip.) The right part of FIG. 9 illustrates the stick’s
signature 246. The hockey stick’s short axis C, 248 and long
axis C, 250 may be projected at different orientations,
defined by the angle 8, 252 and the angle 0, 254, respec-
tively.

Thus, the first feature in this group may respond to the
signature of a hockey stick as follows:

1 1 4)
Foy = max[— SEYE(r, O)dr + — SEYE(V, Oz)dr],
e8| C Cy
)

Sl

where Y, is the edge image of Y. Features I, , and F,
respond to the color content of the stick signature as follows:

! §U(r, 0;)dr

Foap = ! SEU( 0)dr+ ©)
22 = I r,oar I
o1 2

©

1 1
Fr3=— QOV(r, 6)d — QV(r, 6,)d
23 CISE(", 1) "+C256(", 2)dr
o1 G

Where, U and V contain the color information of the image
in a YUV color model. Features F,, and F,, prevent
confusing the red or blue lines on the ice with the stick’s
signature. Fused together by supervised classifier 218, for
instance, these features (3-6) successfully discriminate the
puck’s measurement when imaged at the open. One of
ordinary skill in the art will appreciate that similar features
may be defined to detect other rigid objects such as, but not
limited to, a basketball, a soccer ball, etc.

Foreground regions found to be representative of a human
or a group of humans are further characterized in step 222.
Real-world measures are estimated out of the foreground’s
outline in order to obtained two metrics. The first metric is
the foreground’s point of contact with the ground or the
center of players’ feet on the ground 264. The second metric
is a scalar value, termed environs, which is indicative of the
area of projection on the ground of a foreground region 266.
The environs is used by the tracking method to assess the
number of players projected by a foreground, Next, the
computation of these two metrics is described.

FIG. 10 illustrates two foreground regions, a single-player
foreground and a multi-player foreground. As shown, 260 is
a line connecting the nearest outline point, P,=(u,,, v,), and
the farthest outline point, P=(u, v, to the camera’s pro-
jected position on the ground 270. These nearest and farthest
points are in the vicinity of the feet and heads, respectively.
Therefore, assuming a player’s height of h, the real-world
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location of these points can be computed, resulting in
X, (X, 0, z,) and x =(x, h, z), respectively. The projections
of x,, and x,on the ground, X,=(x,, 0, z,) and X=(x; 0, z,),
are shown in FIG. 10. Similarly, 262 is the outline fitting
line, extending between P, =(u,, v,)) and P,=(u,, v,). Defin-
ing h, and h, as the height values associated with outline’s
points P, and P,, the corresponding real-world points can be
computed, resulting in x,=(X;, h;, z;) and x,=(X,, h,, 7,).
The height values, h; and h,, may be approximated by
IP,~P,IVI[P~P.,[I*h, where P, is the nearest point on line 260
to P, and P, respectively. The projections of X, and x, on the
ground, X,=(x,, 0, z,) and X,=(x,, 0, Z,), are shown in FIG.
10.

The environs is a scalar value proportional to the area
enclosed by the quadrilateral 266 and is defined by the
points: X,, X,, X,,, and, X, The environs is a real-world
metric that can suggest, for example, if a foreground
encloses on one player (single-player measurement) or
rather encloses on a group of connected/occluding players
(multi-player measurement). It may also be used to compare
between foreground regions; meaning, if a foreground
region representative of five players in a previous frame, is
split into two foreground regions in the current frame, then
comparing the two foregrounds’ environs values can suggest
a likely distribution of the five players between the two
foreground regions. The usage of the environs metric for
resolving tracking under occlusion will be explained below.

The second metric, the foreground’s point of contact with
the ground 264 or the center of feet position, is estimated as
follows. The centroid, P =(u_, v_), of the outline is in the
vicinity of a players’ body center, and, therefore, its real-
world position X, can also be calculated: x_=(x_, -h/2, 7).
The points: x, x,,, and x,may be used to estimate the center
of feet location considering their projections on the ground
as follows:

X,y =(( 4%, +5%0)/3,0,(z A2,,+27)/3)

M

FIG. 10 shows the feet position for a foreground encloses on
one player and a foreground encloses on a group of con-
nected/occluding players. Note that these estimates for the
environs and the center of feet location metrics are real-
world measures that are valid for any camera position
relative to the scene.

The last step in the measurement characterization proce-
dure 44 includes compiling a list of measurements and their
associated parameters 224 such as the foreground and its
outline, the environs, the center of feet position, the ROIL,
etc. This measurement list is passed to the object tracking
algorithm 280 for further processing.

FIG. 11 is the block diagram of the object tracking
algorithm. The tracker objective is to initiate, maintain, and
delete tracks, where a track is a data structure representing
a currently tracked object within the field of view. A track’s
data structure stores instantaneous information regarding the
object state such as, but not limited to, its position, velocity,
and team affiliation. At each iteration of the tracking algo-
rithm, the tracker updates existing tracks’ information and
initiates and/or deletes tracks as necessary.

During a game, players collide with and occlude each
other rapidly and unpredictably. In addition, each player’s
pose and position may change considerably from one frame
to the other. This dynamic translates into foreground regions
that frequently merge and split through successive frames.
This behavior complicates the tracking task especially in
sports such as hockey and basketball where players con-
stantly and closely interact with each other. In the measure-
ment-to-track association part of the algorithm 282 the
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tracker starts with linking measurements from the previous
frame (iteration) to measurements in the current frame
(iteration) by employing a Merge/Split Detector. The mea-
surement-to-track association procedure will be explained
through the four frame foreground transition analysis in
FIG. 12.

FIG. 12 demonstrates the transitions of foreground
regions in four successive frames. In a first frame 300, there
are four foreground regions, 308, 310, 312, and 314, each
representative of one object, A, B, C, and D, respectively. In
a second frame 302, the four foregrounds from previous
frame are merged into one large foreground 316. This merge
transition is detected by the tracking algorithm based on
foreground regions overlap. Thus, once a merge was
detected, the objects assigned to the four foregrounds in
frame 300 are assigned to the one foreground in frame 302.

Next, in the third frame 304, the one foreground 316 from
previous frame is split into two foregrounds, 318 and 320. In
this split transition the algorithm needs to distribute the four
objects from the second frame 302 between the two fore-
grounds in the third frame 304. Hence, based on the environs
value of each foreground 318 and 320, three objects are
assigned to the foreground with the larger environs 318 and
one object is assigned to the foreground with the smaller
environs 320. The decision as to which object out of the
four: A, B, C, and D, to assign to which foreground out of
the two: 318, and 320, is based on spatial distance and on
color similarity between each object and each foreground. In
the fourth frame 306, both a split and a merge are occurred.
In this case, the four objects associated with foregrounds 318
and 320 in the third frame 304, will be distributed evenly
between the two foregrounds 322 and 324 in the forth frame
306, since theirs environs values are comparable.

Using the environs metric to decide how to distribute a
plurality of objects among a plurality of foregrounds after a
split transition is essential for resolving the measurement-
to-track association problem especially when tracking
highly dynamic groups of objects such as players. The
distribution of a plurality of objects among a plurality of
foregrounds is selected as follows. First, for each possible
distribution the ratios between each foreground’s environs
and the number of objects assigned to it are calculated. Then,
the distribution that resulted in ratios with minimum vari-
ance is selected. For example, in frame 304 there are three
possible distributions: a) one object assigned to foreground
318 and three objects assigned to foreground 320, b) two
objects assigned to foreground 318 and two objects assigned
to foreground 320, c) three objects assigned to foreground
318 and one object assigned to foreground 320. Therefore,
the corresponding ratios are: a) foreground 318’s environs
divided by one and foreground 320’s environs divided by
three, b) foreground 318’s environs divided by two and
foreground 320’s environs divided by two, and, c) fore-
ground 318’s environs divided by three and foreground
320’s environs divided by one. Given that the environs value
is proportional to the area of a foreground region’s projec-
tion on the ground, it can be seen that the distribution in case
¢) resulted in ratios with minimum variance.

Back to FIG. 11, completing the measurement-to-track
association procedure 282, the following group of steps 292
updates the state of each track independently, and, therefore,
may be employed in parallel. First, if a track is not repre-
sented by a measurement 286, the track is deleted 288,
assuming that the object moved out of the scene. Otherwise,
the track’s current position is predicted in step 296. The
prediction of a track’s current position, x(k), is computed
based on a motion model (constant velocity model for
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instance) as x,,(k) and based on the position of the associated
measurement Xx,,(k), as follows:

x=x(k)=a*x,(k)+(1-a)*x,,(k) (®)

where, a is a scalar proportional to the measurement envi-
rons. Hence, for a small environs (single-player measure-
ment) a is close to zero, and therefore x(k) is close to the
associated measurement feet’s position estimate, X,,(k).
While for a large environs (multi-player measurement), a is
close to one, and therefore x(k) is closely set to x,(k).

Next, the object’s current position is further corrected
(refined) 298 based on color analysis and the relative posi-
tion of the object and its neighboring objects. This position
refining is especially important when several tracks are
associated with one measurement, as illustrated, for
instance, in FIG. 12, frames 2. In this case, knowledge of the
objects’ color characteristic and their previous relative posi-
tions is instrumental in determining their most likely current
position within the foreground region.

Color is an important characterizing feature of objects. It
is invariant to pose, orientation, and resolution, and it is
relatively simple to model using, for instance, a discrete
three-dimensional histogram. The tracker builds a color
histogram for each track at initiation 294 and continues
adding samples into this histogram as long as the environs
of the track’s assigned measurement is small enough (in-
dicative of a single player). This way, pixels drawn from the
player’s foreground region are most likely to belong to this
player only and not to other players, thereby allowing for
accurate color representation of the tracked player. A track’s
color-model may be three dimensional YUV color histogram
with, for instance, an 8 cube bin size.

Each track’s histogram gives a probabilistic representa-
tion of its player. This probabilistic representation may be
used to determine the probability f(I(u, v)) of any pixel I(u,
v) to belong to a certain tracked player. Particularly, the
tracker considers a player’s ROI r=roi(x, w, h) defined by the
projection of a hypothetical player at position x and with w
width and h height. Note that this rectangular region is
defined in image space and is computed as a function of a
real-world player’s position, width (~2 ft) and height (~6 ft).
As a result, regardless of the player’s position relative to the
camera, this ROI will always be tightly enclosing on its
figure.

Having a player’s ROI r, the similarity of the region it
encloses to a specific player’s track color-model is deter-
mined by

Simir, re) =2 U@ V)= ) U ) ©

wver UVETe

where r, is an extended version of the ROI r. This similarity
function subtracts the likelihood of pixels from a frame (the
region between r, and r) around the player’s ROI from the
likelihood of pixels from within a player’s ROI r. This
similarity function is related to Laplace filtering, and results
in a highly discriminative function response when the ROI
correctly fits the player figure.

The tracker may use a particle-filtering technique in order
to get the most likely player’s position in the vicinity of x(k)
in step 298. Particle filtering is a Monte Carlo technique to
approximate the posterior probability, p(x(k)lz(k)), by a set
of samples and their weights, {x,, ®,},_,". Each particle, i,
has its own hypothesis regarding the current track state,
where a track state may be defined by w={x,, y;, 7;, w,, h;}.
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Specifically, each particle hypothesizes that the track’s posi-
tion is at location x,=(X,, y,, ;) and that the player’s width
and height are w, and h,, respectively. Next, each particle’s
hypothesis is weighed by:

Ilx; = xa(k — 1)II]) 10

w; = Sim(r, r,)- (1 - exp(— m

where x,, is the position of the nearest track to x, (excluding
the current track), the term Sim(r, r,) reflects the color
similarity, and the term (1-exp(-|jx,-x,|/|lx,—x|})) weighs
higher those particles that are closer to x relative to x,,. The
second term has the effect of repelling or penalizing particles
positioned nearby other neighboring objects. Note that this
way even though each object is being tracked independently,
the formation of the other objects affects the propagation of
this object’s particles. Tracking each object independently is
advantageous when multi-threading implementation is
desired.

Thus, in the particle filtering method, each particle 1) is
influenced by the “experience” of the overall population of
particles and 2) impacts the overall particles’ population by
its own “experience”. Specifically, the following steps are
carried out:

1. The particles are re-sampled with probability and with
replacement; particles with higher weights will be
duplicated often while particles with lower weights
may be excluded. (In order to prevent degeneration of
the particle population, a small random deviation is
added to the particles’ state variables.)

2. The particles’ population spatially evolves to better fit
the object they track through displacement:

x,(0) =, (o= 1)+ (x(R)-%(k=1)) an

3. Then, the particles’ weights are computed as defined in
(10) and are normalized so that

M=
8l
I

4. Next, the new position of the player’s track is refined
to,

N (12)
k) = Z ;X
i=1

Employing particle filtering is computationally expensive
because the similarity metric in (10) needs to be computed
for each particle. In addition, enough particles should be
included in the analysis to accurately approximate the pos-
terior probability p(xlz). To facilitate real-time tracking an
integral image method may be used. An integral image
method is a technique that can be used to speed up compu-
tation carried out over a rectangular support. In our case, this
is the similarity metric that is computed for all the ROIs of
all the particles that are confined within a window termed
here the canonical window. Pre-calculating the integral
image of f{(I(u, v)) within the canonical window and then
extracting
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for any sub-rectangular region from it, allows the tracking
algorithm to comply with real-time system requirements.

At the end of each tracking iteration, the tracking algo-
rithm automatically identifies the team affiliation of all
active tracks 296. This is done by comparing the color-
model (histogram) of each player’s track to the color-models
(histograms) of home, guest, and referee teams. The histo-
grams, representing the teams’ color-models, may be built at
the very beginning of the tracking operation, before the
game starts, with the help of a human operator as demon-
strated in FIG. 13. An operator may manually select several
tracks of players from the home team 330, the tracker, then,
compiles the color-models of these players, resulting in a
home team’s color model 336. Similarly, the operator may
select tracks of several guest players 332 and several refer-
ees 334 for the tracker to compile the guest team’s 338 and
the referee team’s 340 color-models. Once the team’s color-
models are built, the tracker is ready to cluster actively
tracked objects into teams through comparison of each
track’s color-model (say histogram) with each of the teams’
color-models (say histograms) 344.

There are many ways to measure the similarity or distance
between two color histograms, using measures such as
normalized-correlation, histogram intersection, Kullback
Leibler divergence, and Bhattacharyya coefficient. For
example, the Bhattacharyya coefficient is defined as:

1 g =2NP{M) D1y g, (M), 13)

where, an entry in a player’s histogram, p(m), is compared
with the corresponding entry in a home, guest, or referee’s
histogram, p,, , ,.(m).

Adding the team identification information to a player’s
positional data makes the tracking system a powerful index-
ing engine. It extends its game analysis capacity from
merely analyzing player-based-performance to analyzing
team-based performance and team-based strategy. For
example, knowing the team affiliation of a group of players,
it will be possible to visualize their relative propagation and
formation during critical parts of the game.

Another embodiment for this invention may be as a
component of a broadcast enhancement system. FIG. 14
illustrates a system that receives a feed from the broadcast
camera 360. This can be a dedicated feed from a camera
covering the game play, an isolated point of view camera, or
a program feed which cuts between video from multiple
cameras. The Video Tracker 362 analyzes the incoming
video for landmarks and produces a representation of the
PTZ of the video, which is combined with camera position
information to produce a camera model similar to the
calibration process. The Tracker updates the position over
time through frame to frame analysis of features in the video
such as texture analysis performed by the stabilization
routine 122 in this tracking method invention 364. These
video (camera) tracking techniques 362 are well known in
the field (U.S. Pat. Nos. 5,808,695 and 6,529,613). Alter-
nately, the Video tracker can rely on PTZ sensors on the
camera or a combination of sensors and image stabilization,
which is also known in the field (U.S. Pat. No. 6,100,925).
The resulting camera model may be sent over the Ethernet
connection 370 to the Player Tracker 364, Video Render 368
and Operator controller 366.
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The Player Tracker 364 receives the camera information
from Video Tracker, and updates the camera model for the
particular frame, replacing the functionality of the calibra-
tion (FIG. 3) and the stabilization 122 procedures. In this
embodiment, the background subtraction in step 42 is
replaced with a color chromakey step based on the dominant
background colors. Chromakeying techniques to handle
occluding foreground objects are well known by those
familiar with the art (U.S. Pat. No. 7,015,978). The object
tracking steps 46-52, generate tracks consistent with the
camera model received from the Video Tracker. The result-
ing information may be sent over the Ethernet connection
370 to the Render module 368 and Operator Controller 366.

The Render 368 is responsible for generating and mixing
graphics into the video feed. It analyzes the input video to
find the dominant colors of the background, if chromakeying
of foreground objects is desired. The Render receives cam-
era orientation information from the Video Tracker and
players’ location from the Player Tracker. It uses this data to
warp artwork related to the objects that is realistically
rendered into the video scene. Alternately, it can be used to
relay data statistics in a burn-in graphic. In the typical
scenario, a mixed output is sent out for broadcast.

The operator controller 366 enables a human operator to
monitor and control the broadcast enhancement process. It
provides feedback on the state of the Video Tracker module
362 with diagnostics overlaid on a video window. It allows
the monitoring of Player Tracker 364 data output, with the
option to select information from a player of interest. It
enables the selection of graphics and monitoring of results
within the video render 368. Control of the Video Tracker
362, Player Tracker 364 and Video Render 368 may be
achieved through Ethernet communications 370.

Although the invention has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as exemplary forms of implementing the
claimed invention. Modifications may readily be devised by
those ordinarily skilled in the art without departing from the
spirit or scope of the present invention.

APPENDIX

This section contains a glossary of terms, including com-
monly used terms of art and specific terms coined in this
document to help describe this invention.

A BACKGROUND—the regions in a video frame that
belong to the static part of the scene. For example, in a video
of'a hockey game the ice, boards, creases, may be part of the
background.

BACKGROUND SUBTRACTION—is typically the pro-
cess of separating a video frame into background and
foreground regions. This separation may be with respect to
the reference image and may be represented by the mask.

CAMERA CALIBRATION—the process of producing
the camera’s parameters, including, but not limited to, the
gimbal real-world position, pan, tilt, roll, and image distance
from the lens. Camera parameters are typically used to relate
a point in the image space to its correspondence in real-
world space and vise versa.

AN ENVIRONS—a scalar value indicative of the area of
projection on the ground of the foreground region.

A FOREGROUND—the regions in a video frame that
belong to the dynamic part of the scene; or alternatively,
regions that are not part of the background. For example, in
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a video of a hockey game the players, referees, and puck,
may be part of the foreground.

AN IMAGE SPACE—a two-dimensional space of the
scene’s image as projected by the camera. Image space
coordinates denote the column and row number of a pixel’s
location in the image.

A MASK—is a binary image with pixel values set to 1
where the corresponding video frame’s pixels are part of the
foreground, and set to 0 where the corresponding video
frame’s pixels are part of the background.

A MEASUREMENT—a data structure containing infor-
mation about a foreground such as foreground’s outline,
foreground’s point of contact with the ground, and fore-
ground’s environs.

AN OBJECT—is a physical entity of interest, typically in
motion, in the scene.

AN OUTLINE—an array of image pixel coordinates that
delineates a foreground element is typically referred to as an
outline. The array’s coordinates point to the boundary pixels
of the foreground.

REAL-WORLD SPACE—a three-dimensional space of
the scene’s physical space. Real-world coordinates are in
physical units such as meters or feet.

A REGION-OF-INTEREST (ROI)—sub-region in an
image specified by the left, right, top, and bottom sides of a
bounding rectangle.

A REFERENCE IMAGE—is an image that models a
complete camera view of the static scene without occlusion
by moving objects.

A TRACK—a data structure containing information
about a tracked object such as object’s position, velocity, and
ROL

AVIDEO FRAME—a single framed image in a sequence
of images that captures a snapshot of a dynamic scene.

What is claimed is:

1. A method of extracting data from a video stream, said
method being executed by at least one processor and com-
prising:

updating a reference image based on a first image,

wherein the reference image is representative of a
statistical model of a background scene, including
multiple color values for each pixel within the refer-
ence image;

locating a first plurality of foregrounds in the first image

by comparing the reference image with the first image;
computing for each foreground from the first plurality of
foregrounds foreground parameters, measuring fore-
ground’s image and real-world characteristics; and
assigning an object track to each foreground from the first
plurality of foregrounds if, based on the foreground
parameters, it was determined to be representative of a
single one of a plurality of pre-selected objects, and
wherein the object track is a data structure including a
position, an ROI (region of interest), and a color.

2. The method of claim 1 further comprising:

updating the reference image based on a second image,

locating a second plurality of foregrounds in the second

image by comparing the reference image with the
second image;

computing for each foreground from the second plurality

of foregrounds foreground parameters, measuring fore-
ground’s image and real-world characteristics.

3. The method of claim 2 further comprising:

associating object tracks assigned to foregrounds from the

first plurality of foregrounds with foregrounds from the
second plurality of foregrounds.
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4. The method of claim 3 wherein associating further

includes:

recognizing a foreground from the second plurality of
foregrounds to be a merge of at least two foregrounds

5 from the first plurality of foregrounds; and
associating the object tracks assigned to the at least two
foregrounds from the first plurality of foregrounds with
the foreground from the second plurality of fore-
grounds.

5. The method of claim 3 wherein associating further
includes:

recognizing at least two foregrounds from the second

plurality of foregrounds to be a split from one fore-

ground from the first plurality of foregrounds; and

associating the object tracks assigned to the one fore-
ground from the first plurality of foregrounds with the
at least two foregrounds from the second plurality of
foregrounds, wherein association of the object tracks to
each foreground of the at least two foregrounds is done
based on their foreground parameters.

6. The method of claim 3 further comprising:

computing a predicted position for each object track based

on a motion model and based on the foreground param-
eters of the associated foregrounds.

7. The method of claim 6 further comprising:

refining the predicted position of each object track based

on:

a similarity between the object track’s color data and
the color of an image region defined by an intersec-
tion of the object track’s ROI (region of interest) and
the associated foreground image region; and

the object track’s position relative to other neighboring
object tracks’ positions.

8. The method of claim 1, wherein foreground parameters
further include a real world point of contact with the ground
of the foreground region if it were representative of one or
more of the plurality of pre-selected objects.

9. The method of claim 1, wherein foreground parameters
further include an environs which is a scalar value, indica-
tive of the size of projection on the ground of the foreground
region.

10. A non-transitory computer-readable storage medium
storing a set of instructions that is executable by a processor,
the set of instructions, when executed by the processor,
causing the processor to perform operations comprising:

updating a reference image based on a first image,

wherein the reference image is representative of a

statistical model of a background scene, including

multiple color values for each pixel within the refer-
ence image;

locating a first plurality of foregrounds in the first image

by comparing the reference image with the first image;

computing for each foreground from the first plurality of
foregrounds foreground parameters, measuring fore-
ground’s image and real-world characteristics; and

assigning an object track to each foreground from the first
plurality of foregrounds if, based on the foreground

parameters, it was determined to be representative of a

single one of a plurality of pre-selected objects, and

wherein the object track is a data structure including a

position, an ROI (region of interest), and a color.

11. The non-transitory computer-readable storage
65 medium of claim 10, wherein the operations further com-

prise:
updating the reference image based on a second image,
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locating a second plurality of foregrounds in the second

image by comparing the reference image with the

second image; and

computing for each foreground from the second plurality

of foregrounds foreground parameters, measuring fore-

ground’s image and real-world characteristics.

12. The non-transitory computer-readable storage
medium of claim 11, wherein the operations further com-
prise:

associating object tracks assigned to foregrounds from the

first plurality of foregrounds with foregrounds from the

second plurality of foregrounds.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the associating further
includes:

recognizing a foreground from the second plurality of

foregrounds to be a merge of at least two foregrounds

from the first plurality of foregrounds; and

associating the object tracks assigned to the at least two
foregrounds from the first plurality of foregrounds with
the foreground from the second plurality of fore-
grounds.

14. The non-transitory computer-readable storage
medium of claim 12, wherein the associating further
includes:

recognizing at least two foregrounds from the second

plurality of foregrounds to be a split from one fore-

ground from the first plurality of foregrounds; and

associating the object tracks assigned to the one fore-
ground from the first plurality of foregrounds with the
at least two foregrounds from the second plurality of
foregrounds, wherein association of the object tracks to
each foreground of the at least two foregrounds is done
based on their foreground parameters.

15. The non-transitory computer-readable storage
medium of claim 12, wherein the operations further com-
prise:

computing a predicted position for each object track based

on a motion model and based on the foreground param-

eters of the associated foregrounds.

16. The non-transitory computer-readable storage
medium of claim 15, wherein the operations further com-
prise:

refining the predicted position of each object track based

on:

a similarity between the object track’s color data and
the color of an image, region defined by an intersec-
tion of the object track’s ROI (region of interest) and
the associated foreground image region; and

the object track’s position relative to other neighboring
object tracks’ positions.

17. A system for automatically tracking multiple objects
in a video stream, comprising:

an object position system that tracks data for a three-

dimensional position, a velocity, and an identity of each

one of the objects;
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a non-transitory memory device that stores information
relating to the object data and executable program
code; and
a processor executing the program code to,
update a reference image based on a first image,
wherein the reference image is representative of a
statistical model of a background scene, including
multiple color values for each pixel within the ref-
erence image;

locate a first plurality of foregrounds in the first image
by comparing the reference image with the first
image;

compute for each foreground from the first plurality of
foregrounds foreground parameters, measuring fore-
ground’s image and real-world characteristics; and

assign an object track to each foreground from the first
plurality of foregrounds if, based on the foreground
parameters, it was determined to be representative of
a single one of a plurality of pre-selected objects, and
wherein the object track is a data structure including
a position, an ROI (region of interest), and a color,

the software element further comprising a manager mod-

ule to compile and output the object data.

18. The system of claim 17, wherein the processor

executes the program code to further:

update the reference image based on a second image,

locate a second plurality of foregrounds in the second
image by comparing the reference image with the
second image; and

compute for each foreground from the second plurality of
foregrounds foreground parameters, measuring fore-
ground’s image and real-world characteristics.

19. The system of claim 18, wherein the processor

executes the program code to further:

associate object tracks assigned to foregrounds from the
first plurality of foregrounds with foregrounds from the
second plurality of foregrounds.

20. The system of claim 19, wherein the associating

further includes:

recognizing a foreground from the second plurality of
foregrounds to be a merge of at least two foregrounds
from the first plurality of foregrounds; and

associating the object tracks assigned to the at least two
foregrounds from the first plurality of foregrounds with
the foreground from the second plurality of fore-
grounds.

21. The system of claim 19, wherein the associating

further includes:

recognizing at least two foregrounds from the second
plurality of foregrounds to be a split from one fore-
ground from the first plurality of foregrounds; and

associating the object tracks assigned to the one fore-
ground from the first plurality of foregrounds with the
at least two foregrounds from the second plurality of
foregrounds, wherein association of the object tracks to
each foreground of the at least two foregrounds is done
based on their foreground parameters.
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